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In the heat treatment of steel, uneven cooling invariably introduces residual stresses in the workpiece.
These residual stresses can combine with the thermomechanical stresses encountered in operation to
cause premature fatigue failure of the material. A prediction of the residual and thermoelastoplastic
stresses developed during heat treatment would be beneficial for component design.

In this article a numerical model is developed to predict the thermoelastoplastic and residual stresses
during rapid cooling of a long solid cylinder. The total strains developed during cooling of the cylinder
comprise elastic, thermal, and plastic strains and strains due to phase transformation. For plastic defor-
mation an extension of Jiang’s constitutive equations developed by Jahanian is adopted. The properties
of the material are assumed to be temperature dependent and characterized by nonlinear strain
hardening.

For phase transformation two parts are considered: nucleation according to Scheil’s method and phase
growth according to Johnson and Mehl’s law. For martensitic transformation, a law established by
Koisteinin and Marburger is used. Non-additivity of pearlitic and bainitic nucleation suggested by Man-
ning and Lorig is taken into account by means of a correction factor to Scheil’s summation of the transi-
tion from pearlitic to bainitic.

The effect of phase transformation and temperature dependence of material properties is investigated. It
is shown that by neglecting the temperature dependency and phase transformation in numerical calcula-
tions, the results are underestimated. The numerical results are compared with the available experimen-
tal data in the literature, and good agreement is observed.

1. Introduction

The stability and dynamic behavior of mechanical struc-
tures can be altered by a change in the residual stress present in
the material. The fatigue life can be increased by simply devel-
oping beneficial residual stresses in a mechanical component.
With further insight into the stresses and strains developed dur-
ing heat treatment, the level of residual stresses can be pre-
dicted. With this knowledge, a great deal of the cost and
difficulty associated with heat treatment of metallic compo-
nents can be reduced. In this paper, a combined numerical and
analytical technique is developed to predict the stresses devel-
oped during heat treatment of a round shaft.

The problem of thermoelastoplastic and residual stress dis-
tribution in quenched bodies with material properties that were
assumed to be temperature independent was first investigated
by Sachs (Ref 1). He used the total plasticity theory to estimate
the thermoelastoplastic stresses. Later Weiner and Huddleston
(Ref 2) and Landu and Weiner (Ref 3) incorporated a simplified
phase transformation model in their analysis. Later several oth-
ers proposed different approaches for variety of transient ther-

moelastoplastic problems (Ref 4-12). Incorporation of the tem-
perature dependency of material in the transient thermoelasto-
plastic problems using Mendelson’s (Ref 13) method of
successive elastic solution has been adopted by several investi-
gators (Ref 13-23). Ishikawa (Ref 14, 15), Ishikawa and Hata
(Ref 16), and Ishikawa et al. (Ref 17) solved the problem for a
Ramberg-Osgood type of materials (Ref 18). Jahanian and Sab-
baghian (Ref 19, 20) and Jahanian (Ref 21) extended the Men-
delson’s method for a material of linear strain hardening. Later
Jahanian (Ref 22) used a hyperbolic sine law to investigate the
metal plasticity in aluminum cylinder bars. Extension of Jian’s
metal plasticity model to a material with temperature depend-
ent properties and incorporation of post yielding phenomenon
(Ref 22), has been recently reported by Jahanian (Ref 23).

A simplified model for prediction of thermal stresses, which
are developed during phase transformation of steel, has been
addressed by Jahanian (Ref 24), Mitter et al. (Ref 25), Rammer-
storfer et al. (Ref 26), and Ishikawa et al. (Ref 17).

This research considers the problem of transient thermal
stresses in an infinitely long solid cylinder of low carbon steel
with strain hardening and temperature dependent properties.
The cylinder is rapidly cooled from the austenite temperature
of 840 °C (Fig. 1). For thermoelastoplastic modeling, the con-
stitutive equations developed by Jahanian (Ref 23) for a mate-
rial with temperature dependent property are adopted. For
phase transformation, two parts are considered: nucleation, ac-
cording to Scheil’s method, and phase growth according to a
law developed by Johnson and Mehl (Ref 27). For martensitic
transformation a law established by Koistenin and Murburger
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(Ref 28) is adopted. Non-additivity of pearlitic and bainitic nu-
cleation suggested by Manning and Lorig (Ref 29) is taken into
account by means of a correction factor to Scheil’s summation
at the transition from pearlitic to bainitic. Depending on the
speed of cooling, martensite, pearlite, or bainite is formed in
the specimen.

2. Theoretical Analysis

A low carbon solid cylinder of radius, a, as that described in
Ref 30 is considered. At t = 0 this cylinder is assumed to be at
uniform temperature, Tf, which is above the transformation
temperature, A3 At t > 0 the outside of the cylinder is instanta-
neously cooled to the room temperature, T0. The analysis of the
thermoelastoplastic stresses resulting from cooling of the cyl-
inder are presented.

2.1 Fundamental Equation for Stress and Strain

Total strains developed during the cooling of the cylinder
were the sum of strains due to elastic, thermal, and plastic de-
formation and the strain due to phase transformation:

εij  = εij
e + ∂ij  ∫ αdT + εij

p + εij
ph (Eq 1)

The following dimensionless parameters are defined as:

σr
∗ = 

(1 − v)σr

E0α0(Tf − T0)

εr
∗ = 

(1 − v)εr

α0(Tf − T0)

B = B1 
E0α0(Tf − T0)

(1 − v)

C = C11/[(Tf − T0) + 273] (Eq 2)

where the coefficient of thermal expansion, α, the elastic
modulus, E, and the yield stress, σ1, are assumed to be tempera-
ture dependent and have been defined as the product of two
terms. The first term designated by a zero subscript is a dimen-
sional part, and the second term designated by an asterisk is a
dimensionless part, which is a function of temperature:

α = α0α*( θ) E = E0E*( θ) σ1 = σ10σ*(θ) (Eq 3)

and

α* = 1 + α1θ
E = 1 – E1θ2

σ1
∗ = 1 + σ11θ + σ12θ2 + σ13θ3 (Eq 4)

where α1, E1 σ11, σ12, and σ13 are the material constants.

Upon introducing the previous equations to the familiar
stress strain relation and substituting the results into the equi-
librium and strain compatibility equation, the following equa-
tion is obtained (Ref 23):

E∗εθ
∗ = 

1 − 2v

2(1 − v)
 ∫ εθ

∗ 
∂E∗
∂ρ

 dρ + 
1

2ρ2(1 − v)
 ∫ ρεθ

∗ 
∂E∗
∂ρ

 dρ

+ (1 + v) 1
ρ2

 ∫ E∗ ρ(∫ α∗dθ)dρ + 
1 − 2v

2(1 − v)
 ∫ E∗ (εr

∗p

+ εr
∗ph − εθ

∗p + εθr
∗ph ) 

dρ
ρ

 + 
1 − 2v

2ρ2(1 − v)
 ∫ ρE∗ (εr

∗p + εr
∗ph

− εθ
∗p + εθ

∗ph) dρ − 
v

ρ2(1 − v)
 ∫ ρE∗εz

∗ dρ + C1 + 
C2

ρ2

(Eq 5)

and

E∗εr
∗ = 

1 − 2v

1 − v
 ∫ εθ

∗ 
∂E∗
∂ρ

 dρ − E∗εθ
∗ + (1 + v)E∗ ∫ α∗ dθ

+ 
1 −2v

1 − v
 E∗(εr

∗p + εr
∗ph) + 

1 − 2v

1 − v
 ∫ E

∗
ρ

 (εr
∗p + εr

∗ph

− (εθ
∗θ + εθ

∗ph))dρ − 
v

1 − v
 E∗εz

∗ + 2c1 (Eq 6)

and the boundary conditions are:

σr
∗(ρ = 0) ≠ ∞ σr

∗(ρ = 1) = 0 (Eq 7)

and

2π ∫ σz
∗ρdρ = 0

Introducing Eq 7 to Eq 5 and 6, the constants of integration,
C1 and C2, can be found:

C2 = 0

C1 = −
(1 − 2v)
2(1 − v)

 ∫  
0

1

εθ
∗ 

∂E∗
∂ρ

 dρ − ∫  
0

1
ρεθ

∗ 
∂E∗
∂ρ

 dρ

+ ∫  
0

1

E∗(εr
∗p + εr

∗ph − (εθ
∗p + εθ

∗ph)) 
dρ
ρ

− (1 − 2v) ∫  
0

1
ρE∗ [εr

∗p + εr
∗ph + (εθ

∗p + εθ
∗ph)]dρ

+ 2v ∫  
0

1
ρE∗ εz

∗ dρ − 2(1 + v)(1 − v) ∫  
0

1
ρE∗ (∫ α∗dθ)dρ]

(Eq 8)
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εz
∗ = 









1

∫  
0

1

E∗ ρdρ














(1 − v) ∫  

0

1

E∗(∫ α∗dθ)ρdρ




  



− ∫  

0

1

ρE∗[εθ
∗p + εθ

∗ph + (εr
∗p + εr

∗ph)]dρ




(Eq 9)

2.2 Transient Temperature Distribution

The transient temperature distribution in the cylinder can be
found by solving the familiar Carslaw and Geagar’s heat con-
duction equations (Ref 31).

div(k(gradT)) = γC 
∂T

∂t
(Eq 10)

where k is the thermal conductivity, C is the specific heat, and γ
is the mass density and are defined as:

k = k0k*( θ)

C = C0C*(θ)

γ = γ0γ*(θ) (Eq 11)

where K*, C*, and γ* are defined in Ref 32 and are not repeated
here.

The solution of such a problem when the cylinder is cooled
from the temperature, Tf, to the room temperature distribution
can be obtained by using the familiar Carslaw and Jeager equa-
tion (Ref 31):

θ(ρ,τ) = 


1
k1




 [1 − (1 − 2k1ϕ)1/2] (Eq 12)

where:

ϕ = 1 − 2βhϕ0 ∑ 

m=1

∞

e−λ
n
2 τ 

J0(λnr)

(λn
2 a2 + βh

2)J0(λna)
(Eq 13)

where k1 is a dimensionless parameter and defined in the fol-
lowing equation:

K*( θ) = 1 – K1θ (Eq 14)

In the previous equations:

ϕ0 = 1 − 
K1

2
 βh = 

ah
K0

 s = 
K0

γ0C0b2
 t θ = 

Tf − T

T0
(Eq 15)

where αn can be found by solving the following equation:

αnJ1(αn) – βh j0(αn) = 0 (Eq 16)

and βh is the Biot number.

2.3 Plastic Strain Increment

For calculation of the plastic stress and strain the model de-
veloped by Jahanian (Ref 22, 23) is adopted. The details of the
derivation of equations are given in Ref 23; however, the
method is briefly described in this article. The plastic strains,
which are parts of Eq 5 through 9, can be evaluated using the
following equations:

εij,(t=k)
∗p  = εij, (t=k−1)

∗p  + dεij, (t=k)
∗p (Eq 17)

It has been shown that (Ref 32):

dεij
p = 





mdSkl − αkldm

m2(Skl − αkl)
 − 

dσy

mσy




 [Sij  − αij ] (Eq 18)

where αij  is the deviatoric back stress, which can be related to
the plastic strain through:

αij  = m(θ,τ)εij
p (Eq 19)

and:

Sij  = αij  − (1
3

) σkkδkk (Eq 20)

To show the dimensionless form of Eq 18, the following is
defined:

σe = √3
2

 (Sij  − αij)(Sij  − αij) (Eq 21)

εp = √2
3

 εij
p εij

p (Eq 22)

αe = √3
2

 αijαij (Eq 23)

dεp = √2
3

 dεij
p dεij

p (Eq 24)

The following dimensionless parameters are introduced to
modify the previously mentioned equations:

σv1
∗  = 

(1 − v)σy

E0α0T0

 − 
(1 − v)σy

E0α0T0

 (1 − n)(0.02)

σe
∗ = 

(1 − v)σe

E0α0T0

 αe
∗ = 

(1 − v)αe

E0α0T0

εp
∗ = 

(1 − v)εp
∗

α0T0

 m∗ = 
(1 − v)m
E0α0T0

 Sij
∗ = 

(1 −v)Sij

E0α0T0
(Eq 25)
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It is shown that (Ref 32):

αe
∗ = 

2
3

 m∗ε∗p

dεij
∗p = 

3
2

 
dε∗p

σe
∗

 (Sij
∗ − αij

∗) (Eq 26)

Upon further simplification:

dεij
∗p = 





m∗dSkl
∗  − αkl

∗  dm∗

m∗2(Skl
∗  − αkl

∗ )
 − 

dσy1
∗

m∗σy1
∗




 (Sij

∗ − αij
∗) (Eq 18a)

Metallurgical Response. Consider a solid cylinder that is
heated to a temperature above A3 and then kept at that tempera-
ture until isothermal temperature is reached. Accordingly the
cylinder becomes stress free at that temperature. The cylinder
is then rapidly cooled, and during cooling, pearlite, bainite, and
martensite transformations occur. The phase transformations
calculation is composed of nucleation and phase growth during

pearlitic and bainitic transformation, as well as martensitic
transformation.

Nucleation. Prediction of the onset of nucleation has been
addressed by several researchers. In this research the additivity
rule of Manning and Lorig (Ref 29) is adopted. This technique
relates the initial phase transformation time during continuous
cooling and the initial phase transformation time at a constant
temperature until the onset of nucleation. Based on this law, the
time spent at a particular temperature divided by the time re-
quired for beginning of the transformation at that temperature
is considered to represent a fraction of the total nucleation time
required. The transformation begins when the summation of
this fraction divided by the rate of cooling is equal to unity:

I.P.(Tn) = 
dt1
Z1

 + 
dt2
Z2

 + ...
dtn
Zn

 = ∑ 

t=0

t=t
a

dt(T)
Z(t)

(Eq 27)

where I.P. is the incubatic period. As t approaches n, each term
becomes increasingly smaller.

I.P.(Tn) = ∫  
t=0

t=t
n dt

Z(T)
 = ∫  

A1

T
n dt/T

Z(T)
 dT (Eq 28)

where A1 is the equilibrium transformation temperature. When
the rate of cooling is constant Eq 28 becomes:

I.P.(Tn) = 
1
α

 ∫  
A

T
n dT

Z(T)
(Eq 29)

At the temperature Tn, for which I.P. = 1, the phase transforma-
tion begins. Figures 1 and 2 show the graphical representation
of the above equation.

Phase Growth. The reaction developed by Johnson and Mehl
(Ref 27) and Avarmi (Ref 33-35) is used for phase growth. A law
established by Koistinen and Marburger (Ref 28) is adopted for
martensite transformation. Based on Johnson and Mehl (Ref 27)
and Avarmi (Ref 33-35), the following relation holds:

y = 1 – exp(–btn) (Eq 30)

where b and n can be found by using two arbitrary points on the
isothermal temperature transformation (ITT) curve. The per-
centage of bainite and pearlite transformation at each time step
can be evaluated using the technique described in the numerical
procedure section. In the Eq 30 relation, y is the fraction of the
phase formed by the transformation. Finally the strain due to
phase transformation can be evaluated using the following re-
lation (Ref 28):

εtp(σ,z) = kσef(z) (Eq 31)

where:

f(z) = y k = 10–4 MPa–1

Fig. 1 Graphical representation of Eq 27

Fig. 2 Graphical representation of Eq 28
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and σe is the equivalent stress (Ref 21).
Martensitic Transformation. The kinetics of martensite

transformation have been studied by Koistinen and Marburger
(Ref 28) who proposed the following relation:

y=1–exp[–ea(Ms–T)]

where for most steel:

α = 1.1 × 10–2k–1

Ms = Beginning of Martensite Transformation

Numerical Procedure. For the numerical analysis the cross
section of the cylinder was initially partitioned into 100 un-
equal elements in the radial direction. The time increment in-
itially consisted of 50 unequal intervals. Sections radially near
to the outer surface and the time increment in the early cooling
stages were smaller than at interior sections and:

a) if |(∆εth)c| > |(∆εph)c| and |(∆εth)0| > |(∆εth)0|

then

|(∆εth + ∆εph)c| > |(∆εth + (∆εph)c)0|

b) if |(∆εth)c| > |(∆εph)c| and |(∆εth)0| < |(∆εph)0|

then

|(∆εth + ∆εph)c| < |(∆εth + (∆εph)c)0|

c) if |(∆εth)c| > |(∆εph)c| and |(∆εth)0| < |(∆εph)0|

then the following conditions must be met

(∆εe+p)c = (∆ε)c – (∆εth + (∆εph)c > 0

and

(∆εe+p)0 = (∆ε)0 – (∆εth + ∆εph)0 > 0

At each time step the previous conditions were checked. If the
conditions were satisfied, the results were accepted. Otherwise
a smaller time increment was selected, and the same procedure
was repeated.

Thermoelastoplastic Strains. For thermoelastoplastic
strains, the method used in Ref 23 is used, and it is not repeated
here.

Results of Numerical Calculation. For the purpose of dis-
cussion and comparison with experimental results, the follow-
ing data for steel of 0.3% C, 0.2% Si, 0.45% Mn, 1.3% Cr, and
4.45% Ni is used (Ref 24):

k0 = 59.7w/mk

E0 = 206.0 × 109 N/m2

E1 = 2.34 × 10–3λ2

σ10 = 295 × 106 N/m2

σ12 = –5.5 × 10–3λ2

σ11= 0.017λ

Tf = 840 °C

k1 = 0.0334λ

σ13 = 2.53 × 10–2λ

T0 = 0.0 °C

where λ is the loading parameter and is defined as:

λ = 
E0α0T0

(1 − v)σ0

Coefficient of Thermal Expansion. The coefficient of
thermal expansion changes with temperature (Ref 16, 17, 19-
21). However this change during phase transformation is far
greater than the change in normal temperatures. The following
data from Ref 16, 17, 19 to 21, and 30 has been used.

For the portion of the cylinder that undergoes martensite
transformation:

α0 = 1.12 × 10–8C–1 at 0.605 > θ ≥ 0

α0 = 1.97 × 10–5C–1 at 0.605 < θ ≤ 0

and the portion for which there is a pearlite or bainite transfor-
mation:

α*(θ) = 1.34 at 1 ≥ θ >0.988

α*( θ) = –2.19 at 0.988 ≥ θ ≥ 0.866

α*( θ) = 1.0 at 0.866 ≥ θ ≥ 0

3. Discussion of Results

It is known that during cooling of low carbon steel when
the speed of cooling is high enough, the formation of pearlite
and bainite is avoided and martensite is produced. During this
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process austenite is completely transformed to martensite only
at the surface of the cylinder. Figure 3 shows the tangential and
longitudinal stresses at the surface of the cylinder during rapid
cooling. A close examination of these figures reveals that com-
pressive stresses have been developed up to a temperature of θ
= 0.605, after which tensile stresses are developed. This is vis-
ible in the decreasing trend up to θ = 0.605, at which point the
stress suddenly follows an increasing trend (the development
of tensile stresses). This result occurs because, as the cylinder
is rapidly cooled, the formation of pearlite and bainite is
avoided at the surface of the cylinder (due to the high rate of
cooling). For this reason, the trend of curve temperatures of 723
and 830 °C, which is equivalent to θ = 0.866 and θ = 0.988, did

not change. On the contrary, Fig. 4 depicts that the trend of
curve changes at θ = 0.866 and θ = 0.988, which are equivalent
to 723 and 830 °C. This is due to the fact that at the center of the
cylinder, formation of pearlite and bainite occurs.

At θ = 0.605, martensite transformation occurs at the sur-
face and the stresses increase. During cooling, the cylinder con-
tracts uniformly; however, once martensite transformation
occurs, it begins to expand. Figure 3 depicts this result. Figure
5 shows the residual stresses across the radius of cylinder. The
magnitude of these stresses at the vicinity of the surface are
higher than at the center. Figure 4 shows the thermoelastoplas-
tic stresses at the center of the cylinder. Figure 6 depicts the ef-
fect of phase transformation on the accuracy of the results.

Fig. 3 Thermoelastoplastic stresses at the surface of the cylin-
der during cooling

Fig. 4 Thermoelastoplastic stresses at the center of the cylin-
der during cooling

Fig. 5 Residual stress distribution Fig. 6 Effect of phase transformation on accuracy of results
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Phase transformation is an important factor to the considered
during numerical simulation. When the phase transformation is
neglected, the results are underestimated. Figure 7 shows the
authors’ results against the experimental results of Ref 30. Fig-
ure 7 shows a good numerical agreement within 95% of experi-
mental.

4. Conclusions

The stresses developed in a solid cylinder during quenching
were evaluated, and the following conclusions were derived
from the results:

• Phase transformation is an important factor in evaluating
residual stresses during induction hardening.

• The level of beneficial residual stresses at the surface are
considerably higher than the tensile residual stresses at the
center of the cylinder. This is due to formation of martensite
at the surface and pearlite at the center.
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